Ukuqondanisa (Alignment)
Alignment
Inqubo yokuqinisekisa ukuthi izinjongo zesistimu ye-AI, okukhiphayo, nokuziphatha kuqondana nezinjongo namagugu abantu. Lokhu kubaluleke kakhulu ezinhlelweni ezithuthukile ezingase zithuthukise ukuziphatha okungahlosiwe ngokusobala.
Isibonelo: Ukuqinisekisa ukuthi i-chatbot yokusekela impilo yengqondo ayikaze inikeze izenzo ezilimazayo kungakhathaliseki ukuthi yiziphi izicelo.
I-Application Programming Interface (API) (Application Programming Interface (API))
Application Programming Interface (API)
Iqoqo lemithetho echaziwe namaphrothokholi avumela izinhlelo zesoftware ezahlukene ukuba zixhumane futhi zishintshisane ngedatha.
Isibonelo: Ukusebenzisa i-OpenAI API ukuthumela isicelo nokuthola impendulo ekhiqizwe imodeli yolimi kuhlelo lwakho lwewebhu.
I-Artificial General Intelligence (AGI) (Artificial General Intelligence (AGI))
Artificial General Intelligence (AGI)
Uhlobo oluyithiyori lwe-AI olungenza noma yimuphi umsebenzi wobuhlakani umuntu angawenza. Lujwayele ukufunda kuzo zonke izizinda.
Isibonelo: Isistimu ye-AGI ingafunda ukwakha umculo, yenze ukuhlinzwa, futhi iphase ukuhlolwa kwefilosofi ngaphandle kokuhlela okukhethekile komsebenzi.
Ubuhlakani Bokwenziwa (AI) (Artificial Intelligence (AI))
Artificial Intelligence (AI)
Ukulingisa ubuhlakani bomuntu emishinini ehlelwe ukuba icabange, icabange, futhi yenze ngokuzimela.
Isibonelo: I-AI inika amandla abasizi bomuntu siqu njengoSiri nezinhlelo zokushayela ezizimele njenge-Tesla Autopilot.
Izimiso Zokuziphatha ze-AI (AI Ethics)
AI Ethics
Isiyalo esikhathazekile ngemiphumela yokuziphatha yokuthuthukiswa nokusetshenziswa kwe-AI, okuhlanganisa ubulungiswa, ubumfihlo, ukuziphendulela, nokungabandlululi.
Isibonelo: Ukwakha imihlahlandlela yokuvimbela ama-algorithms okuqasha ukuba angabandlululi ngokobulili noma ubuhlanga.
Ubuhlakani Obukhulisiwe (Augmented Intelligence)
Augmented Intelligence
Imodeli yokubambisana lapho i-AI ihambisana futhi ithuthukise ubuhlakani bomuntu esikhundleni sokubufaka esikhundleni.
Isibonelo: Amathuluzi e-radiology anikwe amandla yi-AI agqamisa okungajwayelekile kodokotela, abenza ukuxilongwa kokugcina.
I-Autonomous Agent (Autonomous Agent)
Autonomous Agent
Isistimu ye-AI ekwazi ukwenza izinqumo zayo futhi ithathe izinyathelo ukuze ifinyelele izinjongo zayo ngaphandle kokungenelela komuntu.
Isibonelo: Irobhothi lokulethwa elizishayelayo elizulazula emigwaqweni yedolobha futhi ligweme izithiyo ngokuzimela.
I-Backpropagation (Backpropagation)
Backpropagation
Indlela yokuqeqesha amanethiwekhi ezinzwa ngokuvuselela izisindo ngokuphambuka kusuka kokukhiphayo kuya ezindaweni zokufaka, kunciphisa amaphutha okubikezela.
Isibonelo: Isetshenziswa ekuqeqesheni izihlukanisi zezithombe ukuze kuncishiswe izinga lamaphutha ekuboneni izinombolo ezibhalwe ngesandla.
Ukubandlulula (I-Algorithmic Bias) (Bias (Algorithmic Bias))
Bias (Algorithmic Bias)
Ukuthanda okungahlosiwe nokuhlelekile emiphumeleni ye-AI ngenxa yedatha yokuqeqesha engalingani noma engameleli.
Isibonelo: Isistimu yokubonwa kobuso ekhomba kabi abantu abamnyama kaningi ngenxa yokungameleli okwanele kudatha yokuqeqesha.
I-Big Data (Big Data)
Big Data
Amasethi edatha amakhulu kakhulu adinga amathuluzi akhethekile ukuze agcine, ahlaziye, futhi akhiphe inani, avame ukusetshenziselwa ukuqeqesha amamodeli e-AI.
Isibonelo: Ukusebenzisa izigidi zokusebenzisana kwabasebenzisi ukuze kuqeqeshwe izinjini zokuncoma zamapulatifomu e-e-commerce.
I-Black Box Model (Black Box Model)
Black Box Model
Uhlobo lwe-AI noma imodeli yokufunda komshini enengqondo yangaphakathi engahlaziyeki kalula kubantu, okwenza kube nzima ukuqonda ukuthi izinqumo zenziwa kanjani.
Isibonelo: Inethiwekhi yezinzwa ejulile esetshenziselwa ukuvumela izikweletu kodwa engahlinzeki ngencazelo ecacile yokuthi kungani umfakisicelo oyedwa wamukelwe kanti omunye wenqatshwa.
I-Cognitive Computing (Cognitive Computing)
Cognitive Computing
Izinhlelo ze-AI eziklanyelwe ukulingisa izinqubo zokucabanga komuntu, njengokucabanga nokufunda, zisebenzisa amasu afana ne-NLP nokubonwa kwamaphethini.
Isibonelo: Isistimu ye-cognitive computing esiza ochwepheshe bezomthetho ukuba bahlaziye umthetho wecala futhi babikezele imiphumela.
I-Computer Vision (Computer Vision)
Computer Vision
Insimu yobuhlakani bokwenziwa evumela amakhompyutha ukuba ahumushe futhi acubungule idatha ebonakalayo njengezithombe namavidiyo.
Isibonelo: Izinhlelo zokubonwa kobuso ezikhomba abantu kumavidiyo okuphepha zisebenzisa i-computer vision.
I-Corpus (Corpus)
Corpus
Iqoqo elikhulu lemibhalo ebhaliwe noma ekhulunywayo esetshenziselwa ukuqeqesha amamodeli olimi.
Isibonelo: Isethi yedatha ye-Common Crawl iyi-corpus yewebhu yomphakathi esetshenziselwa ukuqeqesha amamodeli olimi amakhulu njenge-GPT.
I-Data Drift (Data Drift)
Data Drift
Isenzakalo lapho idatha yokufaka ishintsha ngokuhamba kwesikhathi, okwenza ukusebenza kwemodeli kwehle.
Isibonelo: Imodeli yokugcinwa kokubikezela kwemishini yezimboni iba ngaphansi kokunembile njengoba kungeniswa ubuchwepheshe obusha bezinzwa.
I-Data Labelling (Data Labelling)
Data Labelling
Inqubo yokufaka amanothi kudatha ngamathegi noma amalebula ukuze ilungele ukufunda okugadiwe.
Isibonelo: Ukufaka amalebula ezinkulungwaneni zezithombe zesimila njengezingalimazi noma ezinomdlavuza ukuze kuqeqeshwe imodeli yokuthola umdlavuza.
I-Data Mining (Data Mining)
Data Mining
Inqubo yokuthola amaphethini anenjongo, ukuhlobana, nokungajwayelekile kumasethi edatha amakhulu.
Isibonelo: Abathengisi abasebenzisa i-data mining ukuthola ukuthi abantu abathenga amanabukeni bavame ukuthenga ubhiya.
I-Deep Learning (Deep Learning)
Deep Learning
Ingxenye yokufunda komshini esebenzisa amanethiwekhi ezinzwa anezendlalelo eziningi ukuze imodeli amaphethini ayinkimbinkimbi kudatha.
Isibonelo: I-Deep learning isetshenziswa kumamodeli olimi njenge-GPT-4 namanye amamodeli okukhiqiza izithombe njenge-Stable Diffusion.
I-Diffusion Models (Diffusion Models)
Diffusion Models
Uhlobo lwamamodeli okukhiqiza afunda ukukhiqiza idatha ngokuguqula kancane kancane umsindo ongahleliwe ube okukhiphayo okuhleliwe.
Isibonelo: I-Stable Diffusion idala izithombe ezingokoqobo kusuka kumibhalo esebenzisa amasu okusabalalisa.
I-Embedding (Embedding)
Embedding
Ukumelela okuyinombolo kwedatha, okuvame ukusetshenziselwa ukuthwebula incazelo yesemantic yamagama, izithombe, noma imisho.
Isibonelo: Ku-NLP, igama elithi 'ibhange' lingaba nama-embedding afanayo nelithi 'imali' kodwa ahlukile nelithi 'ibhange lomfula' kuye ngomongo.
I-Epoch (Epoch)
Epoch
Ukuphindaphinda okugcwele kuyo yonke isethi yedatha yokuqeqesha ngesikhathi senqubo yokuqeqesha imodeli yokufunda komshini.
Isibonelo: Uma isethi yedatha inezibonelo eziyi-1,000 futhi imodeli ibona zonke kanye ngesikhathi sokuqeqesha, lokho kuyi-epoch eyodwa.
I-Ethical AI (Ethical AI)
Ethical AI
Ifilosofi yokuklama nokusebenzisa eqinisekisa ukuthi ubuchwepheshe be-AI busebenza ngokusobala, ngokulingana, nangokuhambisana namagugu omphakathi.
Isibonelo: Ithuluzi lokuqasha le-AI elihlanganisa ukuhlolwa kokubandlulula ukuze kuvinjelwe ukubandlulula abantu abambalwa.
I-Expert System (Expert System)
Expert System
Isistimu ye-AI elingisa amakhono okwenza izinqumo ochwepheshe bomuntu endaweni ethile esebenzisa imithetho nengqondo.
Isibonelo: Isistimu yochwepheshe esetshenziswa kwezolimo ukuncoma ukwelashwa kwezitshalo ngokusekelwe kudatha yenhlabathi nomlando wezinambuzane.
I-Explainable AI (XAI) (Explainable AI (XAI))
Explainable AI (XAI)
Izinhlelo ze-AI eziklanyelwe ukwenza izinqubo zazo zangaphakathi nezinqumo ziqondakale kubantu, zikhulise ukwethenjwa nokuziphendulela.
Isibonelo: I-AI yokuxilonga yezokwelapha engahlinzeki nje kuphela ngesincomo kodwa futhi ichaze ukuthi yiziphi izimpawu eziholele kuleso siphetho.
I-Few-shot Learning (Few-shot Learning)
Few-shot Learning
Indlela yokufunda komshini lapho imodeli iqeqeshwa noma ilungiswa kusetshenziswa kuphela inani elincane lezibonelo ezifakwe amalebula.
Isibonelo: Ukwenza ngezifiso i-LLM ukubhala ama-imeyili asemthethweni ngemuva kokuyibonisa izibonelo eziyi-10 kuphela.
I-Fine-tuning (Fine-tuning)
Fine-tuning
Inqubo yokuthatha imodeli eqeqeshwe ngaphambilini bese uyiqeqesha ngokuqhubekayo kusethi yedatha entsha, encane ukuze uyenze ikhetheke emsebenzini othile.
Isibonelo: Ukulungisa i-LLM ejwayelekile njenge-GPT kumadokhumenti asemthethweni angaphakathi ukuze kwakhiwe umsizi wokubhala umthetho.
I-Foundation Model (Foundation Model)
Foundation Model
Imodeli enkulu eqeqeshwe kudatha ehlukahlukene nebanzi engaguqulelwa emisebenzini eminingi elandelayo.
Isibonelo: I-GPT-4 ne-PaLM 2 zingamamodeli esisekelo akwazi ukufingqa, ukubuza nokuphendula, ukuhumusha, nokunye okuningi.
I-Fuzzy Logic (Fuzzy Logic)
Fuzzy Logic
Uhlobo lwengqondo olubhekana namanani alinganiselwe esikhundleni sengqondo eqinile yeqiniso/amanga (binary), ewusizo ekucabangeni ngaphansi kokungaqiniseki.
Isibonelo: Isetshenziswa ezinhlelweni zokulawula isimo sezulu ukuze kulungiswe izinga lokushisa ngokusekelwe kokufaka okungacacile njengokuthi 'kushisa kancane' noma 'kubanda kakhulu'.
I-Generative Adversarial Network (GAN) (Generative Adversarial Network (GAN))
Generative Adversarial Network (GAN)
Ukwakhiwa kwemodeli yokukhiqiza lapho amanethiwekhi amabili — umkhiqizi nombandlululi — eqhudelana ukuze athuthukise ikhwalithi yokukhiphayo.
Isibonelo: Ama-GAN asetshenziselwa ukudala amavidiyo e-deepfake noma ukukhiqiza izithombe zomkhiqizo ezingokoqobo kusuka kumidwebo.
I-Generative AI (Generative AI)
Generative AI
Isigaba sobuhlakani bokwenziwa esingakwazi ukudala okuqukethwe okusha — njengombhalo, izithombe, umculo, noma ividiyo — kusuka kudatha yokuqeqesha.
Isibonelo: I-ChatGPT ekhiqiza okuthunyelwe kubhulogi noma i-Midjourney edala ubuciko bedijithali kusuka kumibhalo.
I-Generative Pre-trained Transformer (GPT) (Generative Pre-trained Transformer (GPT))
Generative Pre-trained Transformer (GPT)
Uhlobo lwamamodeli olimi amakhulu athuthukiswe yi-OpenAI esebenzisa ukwakhiwa kwe-transformer futhi aqeqeshwe ngaphambilini ngamanani amakhulu edatha yombhalo ukuze enze imisebenzi ehlukahlukene yolimi.
Isibonelo: I-GPT-4 iyakwazi ukubhala izindatshana, ukuhumusha izilimi, nokufingqa amadokhumenti ngokushesha okuncane.
I-Genetic Algorithm (Genetic Algorithm)
Genetic Algorithm
Indlela yokwenza kahle ephefumulelwe ukukhethwa kwemvelo lapho izixazululo ziguquka ngokuhamba kwesikhathi ngokuguqulwa, ukuwela, nokukhethwa.
Isibonelo: Isetshenziselwa ukuklama izakhiwo zenethiwekhi yezinzwa ezisebenzayo ngokulingisa ukusinda kwabanamandla.
I-Hallucination (Hallucination)
Hallucination
Ukukhiqizwa kokuqukethwe okuzwakala kunengqondo kodwa okungelona iqiniso noma okungenangqondo yimodeli ye-AI.
Isibonelo: Imodeli yolimi ekhiqiza isicaphuno esingekho noma inikeze amaqiniso omlando angamanga.
I-Heuristic (Heuristic)
Heuristic
Indlela esebenzayo yokuxazulula izinkinga engaqinisekisi isixazululo esiphelele kodwa yanele ngezinjongo ezisheshayo.
Isibonelo: Ukusebenzisa umthetho wesithupha ukulinganisa isikhathi sokulethwa kusistimu ye-AI yezokuthutha.
I-Hyperparameter (Hyperparameter)
Hyperparameter
Inani lokumisa elisethwe ngaphambi kokuqeqesha imodeli yokufunda komshini, njengezinga lokufunda noma inani lezendlalelo.
Isibonelo: Ukulungisa usayizi we-batch kusuka ku-32 kuya ku-128 ukuze kuthuthukiswe isivinini sokuqeqesha nokusebenza kwemodeli.
I-Inference (Inference)
Inference
Inqubo yokusebenzisa imodeli yokufunda komshini eqeqeshiwe ukuze kwenziwe izibikezelo noma kukhiqizwe okukhiphayo kusuka kudatha entsha yokufaka.
Isibonelo: Ukusebenzisa imodeli ye-GPT elungisiwe ukuze kubhalwe ama-imeyili eqembu lokusekela amakhasimende.
I-Intent Detection (Intent Detection)
Intent Detection
Umsebenzi ekuqondeni ulimi lwemvelo lapho isistimu ikhomba injongo yomsebenzisi emlayezweni.
Isibonelo: Ku-chatbot, ukubona 'Ngifuna ukubhuka indiza' njengenjongo yokubhuka uhambo.
I-Internet of Things (IoT) (Internet of Things (IoT))
Internet of Things (IoT)
Inethiwekhi yamadivayisi aphathekayo axhunyiwe afakwe izinzwa, isoftware, namanye ubuchwepheshe ukuze kuqoqwe futhi kushintshisane ngedatha.
Isibonelo: Ama-thermostat ahlakaniphile namafriji abika idatha yokusebenzisa futhi alungise izilungiselelo esebenzisa ukuhlaziya kwe-AI.
I-Interpretability (Interpretability)
Interpretability
Izinga lapho umuntu angaqonda khona izindlela zangaphakathi zemodeli yokufunda komshini nenqubo yayo yokwenza izinqumo.
Isibonelo: Isihlahla sezinqumo sihlaziyeka kakhulu kunenethiwekhi yezinzwa ejulile ngoba izinqumo zayo ziyalandeleka.
I-Jupyter Notebook (Jupyter Notebook)
Jupyter Notebook
Indawo yokusebenza yekhompyutha evulekile evumela abasebenzisi ukuba babhale ikhodi, babonise okukhiphayo, futhi babhale ukuhlaziya kusixhumi esibonakalayo esisodwa.
Isibonelo: Ososayensi bedatha basebenzisa ama-Jupyter Notebooks ukuze bakhe amamodeli okufunda komshini futhi babelane ngemiphumela.
I-K-Nearest Neighbours (KNN) (K-Nearest Neighbours (KNN))
K-Nearest Neighbours (KNN)
I-algorithm yokufunda komshini elula, engaparametric esetshenziselwa ukuhlukanisa nokubuyisela. Yenza izinqumo ngokusekelwe ezibonelweni zokuqeqesha eziseduze kakhulu endaweni yesici.
Isibonelo: Ukuze uhlukanise isithelo esisha njenge-apula noma ipheya, i-KNN ihlola ukuthi yiziphi izithelo ezifakwe amalebula eziseduze kakhulu ngesimo nombala.
I-Knowledge Graph (Knowledge Graph)
Knowledge Graph
Isakhiwo sedatha esisebenzisa ama-node nama-edge ukumelela nokugcina izincazelo ezixhunyiwe zezinhlangano nobudlelwano bazo.
Isibonelo: Iphaneli yolwazi ye-Google inikwe amandla yi-knowledge graph exhuma izinhlangano ezifana nabantu, izindawo, nemicimbi.
I-Language Learning Model Optimisation (LLMO) (Language Learning Model Optimisation (LLMO))
Language Learning Model Optimisation (LLMO)
Amasu asetshenziselwa ukuthuthukisa ukusebenza, ukusebenza kahle, noma ukuguquguquka kwamamodeli olimi amakhulu emisebenzini ethile noma ezizindeni.
Isibonelo: Ukusebenzisa i-quantisation nokulungisa imiyalelo ukuze kuthuthukiswe i-LLM ukuze isetshenziswe ebhizinisini.
I-Large Language Model (LLM) (Large Language Model (LLM))
Large Language Model (LLM)
Uhlobo lwemodeli yokufunda ejulile eqeqeshwe ngamanani amakhulu edatha yombhalo ekwazi ukukhiqiza, ukuqonda, nokucabanga ngolimi lomuntu.
Isibonelo: I-ChatGPT ne-Claude zingama-LLM aqeqeshwe ukusiza ekubhaleni, ekuhleleni ikhodi, nasekuphenduleni imibuzo.
I-Latent Space (Latent Space)
Latent Space
Ukumelela okungabonakali okunezinhlangothi eziningi lapho okufakwayo okufanayo kuqoqwa khona eduze, okusetshenziswa kumamodeli okukhiqiza nama-embedding.
Isibonelo: Ekukhiqizeni izithombe, ukuguqula i-latent space kungashintsha izici ezifana nokukhanya noma imizwa.
I-Learning Rate (Learning Rate)
Learning Rate
I-hyperparameter ebalulekile ekuqeqesheni elawula ukuthi izisindo zemodeli zilungiswa kangakanani ngokuphathelene ne-loss gradient.
Isibonelo: Izinga lokufunda eliphezulu lingaholela ekudluleni okuncane, kanti izinga eliphansi kakhulu linciphisa inqubekelaphambili yokuqeqesha.
Ukufunda Komshini (ML) (Machine Learning (ML))
Machine Learning (ML)
Ingxenye ye-AI evumela izinhlelo ukuba zifunde kudatha futhi zithuthukise ukusebenza ngaphandle kokuhlelwa ngokusobala.
Isibonelo: Izihlungi ze-spam zisebenzisa ukufunda komshini ukuze zihlukanise ama-imeyili njenge-spam noma cha ngokusekelwe ezibonelweni ezedlule.
I-Model Drift (Model Drift)
Model Drift
Isenzakalo lapho ukunemba kwemodeli kwehlela ngokuhamba kwesikhathi ngenxa yezinguquko kudatha noma endaweni.
Isibonelo: Imodeli yokuthola ukukhwabanisa iba ngaphansi kokunembile njengoba amasu okukhwabanisa eguquka.
I-Model Training (Model Training)
Model Training
Inqubo yokufaka idatha kumodeli yokufunda komshini nokulungisa amapharamitha ayo ukuze kuncishiswe iphutha.
Isibonelo: Ukuqeqesha injini yokuncoma kumlando wokuthenga kwamakhasimende ukuze kunconywe imikhiqizo emisha.
I-Multimodal AI (Multimodal AI)
Multimodal AI
Izinhlelo ze-AI ezikwazi ukucubungula nokuhlanganisa izinhlobo eziningi zedatha njengombhalo, izithombe, umsindo, nevidiyo.
Isibonelo: Imodeli efana ne-GPT-4 Vision engakwazi ukufunda umbhalo futhi ihumushe izithombe ngesikhathi esifanayo.
I-Natural Language Processing (NLP) (Natural Language Processing (NLP))
Natural Language Processing (NLP)
Ingxenye ye-AI egxile ekusebenzisaneni phakathi kwamakhompyutha nezilimi zabantu (zemvelo). Ivumela imishini ukuba ifunde, iqonde, futhi iphendule ngolimi lomuntu.
Isibonelo: I-NLP isetshenziswa kubasizi bezwi, izinhlelo zokuhumusha ulimi, nama-chatbot.
I-Neural Network (Neural Network)
Neural Network
Imodeli yokufunda komshini ephefumulelwe isakhiwo sobuchopho bomuntu, eyakhiwe ngezendlalelo zama-node axhunyiwe (izinzwane).
Isibonelo: Amanethiwekhi ezinzwa angemuva kwamamodeli okufunda ajulile asetshenziswa ekubonweni kwezithombe nenkulumo.
I-Noise (Noise)
Noise
Ulwazi olungahleliwe noma olungahlobene nedatha olungafihla amaphethini anenjongo futhi luthinte kabi ukusebenza kwemodeli.
Isibonelo: Amaphutha enzwa noma okufakwayo kwedatha okugcwele amaphutha kungathathwa njengomsindo.
I-Ontology (Ontology)
Ontology
Uhlaka oluhleliwe oluhlukanisa futhi luchaze ubudlelwano phakathi kwemiqondo ngaphakathi kwesizinda, okuvame ukusetshenziswa ezinhlelweni ze-AI zesemantic.
Isibonelo: I-ontology kwezokunakekelwa kwempilo ingachaza ukuthi izimpawu zihlobana kanjani nezifo nokwelashwa.
I-Overfitting (Overfitting)
Overfitting
Iphutha lokumodela lapho imodeli yokufunda komshini ithwebula umsindo kudatha yokuqeqesha futhi yenza kabi kudatha entsha.
Isibonelo: Imodeli ekhumbula izimpendulo zokuqeqesha kodwa ingakwazi ukuphatha idatha yokuhlola engabonwa ihlulekile.
I-Predictive Analytics (Predictive Analytics)
Predictive Analytics
Ukusetshenziswa kwedatha, ama-algorithms, ne-AI ukukhomba amathuba emiphumela yesikhathi esizayo ngokusekelwe kudatha yomlando.
Isibonelo: Abathengisi basebenzisa i-predictive analytics ukuze babikezele isidingo semikhiqizo ethile.
I-Pre-training (Pre-training)
Pre-training
Inqubo yokuqeqesha imodeli ekuqaleni kusethi yedatha enkulu, ejwayelekile ngaphambi kokuyilungisa ngokuqondile emisebenzini ethile.
Isibonelo: Amamodeli e-GPT aqeqeshwa ngaphambilini kuma-corpus amakhulu ngaphambi kokwenziwa ngezifiso kuma-chatbot okusekela amakhasimende.
I-Prompt Engineering (Prompt Engineering)
Prompt Engineering
Ubuciko nesayensi yokwakha izicelo ezisebenzayo ukuze kuqondiswe okukhiphayo kwamamodeli olimi amakhulu.
Isibonelo: Ukwengeza imiyalelo yesistimu efana nokuthi 'Phendula njengomfundisi ohloniphekile' kuyisibonelo se-prompt engineering.
I-Quantisation (Quantisation)
Quantisation
Indlela yokucindezela imodeli enciphisa inani lamabhithi asetshenziselwa ukumelela izisindo nokusebenza, kuthuthukisa ukusebenza kahle.
Isibonelo: Ukuguqula imodeli kusuka ku-32-bit kuya ku-8-bit kuthuthukisa ukusebenza kumadivayisi eselula.
I-Quantum Computing (Quantum Computing)
Quantum Computing
I-paradigm entsha yokusebenza kwekhompyutha esekelwe kumakhenikhi we-quantum, enethuba lamakhono okucubungula okukhulu.
Isibonelo: I-Quantum computing ingase ngelinye ilanga isheshise ukuqeqeshwa kwe-AI ngaphezu kwemikhawulo yakudala.
I-Reasoning Engine (Reasoning Engine)
Reasoning Engine
Isistimu ku-AI ekhipha iziphetho ezinengqondo kusuka eqoqweni lamaqiniso noma idatha esebenzisa imithetho noma ama-algorithms okukhipha.
Isibonelo: Ithuluzi lokuxilonga le-AI lisebenzisa injini yokucabanga ukuze likhiphe izimo zezokwelapha ezingenzeka ngokusekelwe ezimpawu.
I-Reinforcement Learning (RL) (Reinforcement Learning (RL))
Reinforcement Learning (RL)
Indawo yokufunda komshini lapho ama-agent efunda ngokusebenzisana nendawo yawo ukuze akhulise imivuzo eqoqiwe.
Isibonelo: Irobhothi elifunda ukuhamba ngokuzama nangamaphutha lisebenzisa amasu e-RL.
I-Reinforcement Learning with Human Feedback (RLHF) (Reinforcement Learning with Human Feedback (RLHF))
Reinforcement Learning with Human Feedback (RLHF)
Indlela yokufunda lapho izintandokazi zabantu ziqondisa isignali yomvuzo ye-AI, okuvame ukusetshenziswa ekulungiseni amamodeli olimi.
Isibonelo: I-ChatGPT yaqeqeshwa nge-RLHF ukuze ikhiqize izimpendulo eziwusizo nezilondekile.
I-Retrieval-Augmented Generation (RAG) (Retrieval-Augmented Generation (RAG))
Retrieval-Augmented Generation (RAG)
Indlela ehlanganisa ukubuyiswa kolwazi nokukhiqiza, lapho i-LLM ithola amadokhumenti afanele ukuze ithuthukise impendulo yayo.
Isibonelo: Umsizi we-AI obuyisa futhi acaphune imininingwane yomkhiqizo ngenkathi ekhiqiza impendulo embuzweni wobuchwepheshe.
I-Self-Supervised Learning (Self-Supervised Learning)
Self-Supervised Learning
Indlela yokuqeqesha lapho imodeli ifunda amaphethini ngokukhiqiza amalebula ayo kusuka kudatha eluhlaza, kunciphisa ukuthembela kudatha efakwe amanothi abantu.
Isibonelo: I-BERT iqeqeshwa ngokufunda okuzigadayo ngokubikezela amagama alahlekile embhalweni.
I-Semantic Search (Semantic Search)
Semantic Search
Indlela yokusesha eqonda injongo yomsebenzisi nencazelo yomongo, hhayi nje ukufanisa amagama angukhiye.
Isibonelo: Ukusesha 'indlela yokulungisa umpompi ovuzayo' kubuyisa imihlahlandlela ngisho noma igama elithi 'umpompi ovuzayo' lingekho kudokhumenti.
I-Sentiment Analysis (Sentiment Analysis)
Sentiment Analysis
Inqubo yokukhomba imizwa, imibono, noma izimo zengqondo embhalweni, okuvame ukuhlukaniswa njengokuhle, okubi, noma okungathathi hlangothi.
Isibonelo: Ukuhlaziya ama-tweets ukuze kulinganiswe ukusabela komphakathi kumkhiqizo omusha.
I-Stochastic (Stochastic)
Stochastic
Okuhlanganisa ukungahleliwe noma ukuziphatha okungenzeka, okuvame ukusetshenziswa ku-AI yokukhiqiza nama-algorithms okwenza kahle.
Isibonelo: Okukhiphayo kwe-GPT-4 kuyahlukahluka kokufakwayo okufanayo ngenxa yenqubo yayo yokukhipha engahleliwe.
I-Strong AI (Strong AI)
Strong AI
Futhi eyaziwa ngokuthi i-Artificial General Intelligence (AGI), ibhekisela emishinini enamakhono okucabanga asezingeni lomuntu kuzo zonke izizinda.
Isibonelo: I-AI yesikhathi esizayo engakwazi ukubhala amanoveli ngokuzimela, ihlele amadolobha, futhi ixazulule izinkinga zokuziphatha ngokulinganayo.
I-Super Artificial Intelligence (SAI) (Super Artificial Intelligence (SAI))
Super Artificial Intelligence (SAI)
I-AI eyithiyori edlula kakhulu ubuhlakani bomuntu kuzo zonke izici—ukucabanga, ubuhlakani, ubuhlakani bemizwa, njll.
Isibonelo: I-SAI ingase ngelinye ilanga ithuthukise isayensi nefilosofi entsha ngokuzimela.
I-Supervised Learning (Supervised Learning)
Supervised Learning
Indlela yokufunda komshini lapho amamodeli eqeqeshwa kudatha efakwe amalebula ukuze afunde ukufaka-okukhiphayo.
Isibonelo: Ukufundisa imodeli ukuhlukanisa ama-imeyili njenge-spam noma cha kusetshenziswa izibonelo zomlando.
I-Synthetic Data (Synthetic Data)
Synthetic Data
Idatha ekhiqizwe ngokwenziwa elingisa idatha yangempela, okuvame ukusetshenziselwa ukuqeqesha lapho idatha yangempela ingavamile noma ibucayi.
Isibonelo: Ukudala izithombe zezokwelapha ezenziwe ngokwenziwa ukuze kuqeqeshwe amamodeli okuxilonga ngaphandle kokwephula ubumfihlo besiguli.
I-Token (Token)
Token
Iyunithi yombhalo ecubungulwa ama-LLM—ngokuvamile igama noma ingxenye yegama.
Isibonelo: Umusho othi 'Sawubona mhlaba!' uhlukaniswa ube ama-token ama-3: 'Sawubona', 'mhlaba', no '!'.
I-Tokenisation (Tokenisation)
Tokenisation
Inqubo yokuhlukanisa umbhalo ube ama-token ukuze ucubungulwe imodeli.
Isibonelo: Ku-NLP, 'I-ChatGPT inhle' iba ['Chat', 'G', 'PT', 'inhle'].
I-Transfer Learning (Transfer Learning)
Transfer Learning
Ukusetshenziswa kolwazi oluvela emsebenzini owodwa ukuze kuthuthukiswe ukufunda komunye umsebenzi ohlobene, kunciphisa isikhathi sokuqeqesha nezidingo zedatha.
Isibonelo: Ukulungisa imodeli eqeqeshwe embhalweni wesiNgisi ukuze yenze ukuhlaziya imizwa kolunye ulimi.
I-Transformer (Transformer)
Transformer
Ukwakhiwa kwenethiwekhi yezinzwa esebenzisa izindlela zokunaka ukuze imodeli idatha elandelanayo, esetshenziswa kakhulu kuma-LLM.
Isibonelo: I-BERT, i-GPT, ne-T5 zingamamodeli asekelwe ku-transformer.
I-Underfitting (Underfitting)
Underfitting
Lapho imodeli ilula kakhulu ukuthwebula amaphethini kudatha yokuqeqesha, okuholela ekusebenzeni okubi.
Isibonelo: Imodeli eline-linear ezama ukubikezela ukuhlukaniswa kwezithombe eziyinkimbinkimbi ingase ihluleke.
I-Unsupervised Learning (Unsupervised Learning)
Unsupervised Learning
Indlela yokufunda lapho amamodeli ekhomba amaphethini noma amaqoqo kudatha engafakwanga amalebula.
Isibonelo: Ukuhlanganisa amakhasimende ngokusekelwe ekuziphatheni kokuthenga ngaphandle kwamalebula achazwe ngaphambilini.
I-User Intent (User Intent)
User Intent
Inhloso noma injongo engemuva kombuzo noma ukusebenzisana komsebenzisi.
Isibonelo: Umsebenzisi obhala 'indlela yokubhaka ikhekhe' cishe uhlose ukuthola iresiphi.
I-Validation Set (Validation Set)
Validation Set
Ingxenye yedatha esetshenziselwa ukuhlola ukusebenza kwemodeli ngesikhathi sokuqeqesha nokulungisa ama-hyperparameter.
Isibonelo: Isetshenziselwa ukuthola i-overfitting ngaphambi kokuhlolwa kokugcina.
I-Vector Database (Vector Database)
Vector Database
I-database eklanyelwe ukugcina nokusesha ama-vector embedding asetshenziswa emisebenzini ye-AI efana nokusesha okufanayo ne-RAG.
Isibonelo: I-Pinecone ne-Weaviate zingama-vector database okugcina umbhalo noma ama-embedding esithombe.
I-Vector Embedding (Vector Embedding)
Vector Embedding
Ukumelela okuyinombolo kwedatha okugcina incazelo yesemantic nobudlelwano endaweni ye-vector.
Isibonelo: Amagama athi 'inkosi' nelithi 'indlovukazi' anama-embedding afanayo anomehluko omncane wobulili.
I-Virtual Assistant (Virtual Assistant)
Virtual Assistant
I-agent yesoftware enikwe amandla yi-AI esiza abasebenzisi ukuba baqedele imisebenzi ngokuxoxa noma ngemiyalo yezwi.
Isibonelo: USiri, u-Alexa, noGoogle Assistant bangabasizi abaziwayo.
I-Voice Recognition (Voice Recognition)
Voice Recognition
Ubuchwepheshe obuhumusha futhi buguqule ulimi olukhulunywayo lube umbhalo noma isenzo.
Isibonelo: Ukuthayipha ngezwi nemiyalo yezwi kuthembela ezinhlelweni zokubonwa kwezwi.
I-Weak AI (Weak AI)
Weak AI
Izinhlelo ze-AI eziklanyelwe ukwenza umsebenzi omncane, othile ngaphandle kobuhlakani obujwayelekile.
Isibonelo: I-AI edlala i-chess engakwazi ukuqonda ulimi noma ukushayela imoto iyisibonelo se-weak AI.
I-Web Scraping (Web Scraping)
Web Scraping
Ukukhishwa okuzenzakalelayo kolwazi kumawebhusayithi, okuvame ukusetshenziselwa ukuqoqa idatha yokuqeqesha noma ukuqapha okuqukethwe.
Isibonelo: Ukukhishwa kwezinhlu zezindlu ukuze kuqeqeshwe imodeli yokulinganisa impahla.