AI Gbeŋutinunya Ðeɖefia

Ðe amegbetɔ ƒe nunyaŋutinunya ƒe gbeŋutinunya me kɔ kple míaƒe gbeŋutinunya ƒe agbalẽ bliboa. Tso mɔ̃wo ƒe nusɔsrɔ̃ dzi va se ɖe aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋunuwo dzi la, míeɖea AI gɔmeɖose sesẽwo me le nya bɔbɔewo me.

Nɔnɔmeɖoɖo (Alignment)

Alignment
Mɔnu si dzi wotona kpɔa egbɔ be AI mɔ̃ɖaŋununya aɖe ƒe taɖodzinuwo, nu siwo dona tso eme, kple nuwɔnawo sɔ kple amegbetɔ ƒe taɖodzinuwo kple agbenɔnɔ ƒe gɔmeɖosewo. Esia le vevie koŋ le mɔ̃ɖaŋununya deŋgɔwo me siwo ate ŋu atu nuwɔna siwo womenɔ mɔ kpɔm na le gɔmedzedzea me o.
Kpɔɖeŋu: Wokpɔa egbɔ be dzeɖoɖomɔ̃ si wotsɔ kpena ɖe ame ŋu le susu me léle me la meɖoa aɖaŋu gbegblẽ aɖeke o, eɖanye biabia ka kee woɖo o.

Dɔwɔnuwo ƒe Mɔ̃ɖaŋununya ƒe Gbeɖiɖi (API) (Application Programming Interface (API))

Application Programming Interface (API)
Se kple mɔnu siwo woɖo siwo ɖea mɔ na software mɔ̃ɖaŋununya vovovowo be woaɖo dze ahado nyatakakawo ɖa.
Kpɔɖeŋu: OpenAI API zazã atsɔ aɖo biaɖaŋu aɖo ahaxɔ gbeŋutinunya ƒe mɔ̃ɖaŋununya ƒe ŋuɖoɖo le wò web dɔwɔnua me.

AmegbetÉ” Æ’e Nunya Gbogbo (AGI) (Artificial General Intelligence (AGI))

Artificial General Intelligence (AGI)
AI ƒe nɔnɔme aɖe si wosusui be ate ŋu awɔ susuŋutinunya dɔ aɖe sia aɖe si amegbetɔ ate ŋu awɔ. Etsɔa nusɔsrɔ̃ wɔa dɔ le dɔwɔƒe vovovowo.
Kpɔɖeŋu: AGI mɔ̃ɖaŋununya aɖe ate ŋu asrɔ̃ hadzidzi ŋlɔ̃, awɔ amekoko, eye wòado filozofi dodokpɔ aɖe to mɔ̃ɖaŋununya tɔxɛ aɖeke manɔmee.

AmegbetÉ” Æ’e Nunya (AI) (Artificial Intelligence (AI))

Artificial Intelligence (AI)
Amegbetɔ ƒe nunya sɔsrɔ̃ le mɔ̃wo me siwo woɖo be woabu susu, woalé ŋku ɖe nu ŋu, eye woawɔ nu le wo ɖokui si.
Kpɔɖeŋu: AI doa ŋusẽ kpeɖeŋutɔwo abe Siri kple ʋukuku mɔ̃ɖaŋununyawo abe Tesla Autopilot ene.

AI ƒe Agbenɔnɔ ƒe Gɔmeɖosewo (AI Ethics)

AI Ethics
Nusrɔ̃ƒe si léa ŋku ɖe AI ƒe ŋgɔyiyi kple zazã ƒe agbenɔnɔŋutinya ŋu, siwo dometɔ aɖewoe nye dzɔdzɔenyenye, amegbetɔ ƒe gomenɔamesiwo, akɔntabubu, kple ameŋkumemakpɔmakpɔ.
Kpɔɖeŋu: Mɔfiamewo wɔwɔ be woaxe mɔ na dɔxɔlawo ƒe algorithm-wo be woagaɖe ame aɖeke ɖa le ŋutsu alo nyɔnu nyenye alo to nyenye ta o.

Nunya si Wodo Ðe Dzi (Augmented Intelligence)

Augmented Intelligence
Subɔsubɔ ƒe mɔ̃ɖaŋununya si me AI dea amegbetɔ ƒe nunya dzi eye wòdoa ŋusẽe tsɔ wu be wòaɖɔ li nɛ.
Kpɔɖeŋu: AI-ŋusẽtɔ radiology dɔwɔnuwo siwo fiaa nu siwo mesɔ o na ɖɔktawo, amesiwo wɔa nyametsotso mamlɛa.

Dɔwɔla si le Eɖokui si (Autonomous Agent)

Autonomous Agent
AI mɔ̃ɖaŋununya si ate ŋu awɔ eya ŋutɔ ƒe nyametsotsowo ahawɔ nu be yeaɖo eƒe taɖodzinuwo gbɔ amegbetɔ ƒe kpekpeɖeŋu manɔmee.
Kpɔɖeŋu: Agbatsɔʋu si kua eɖokui si le du me mɔwo dzi eye wòƒoa asa na mɔxenuwo le eɖokui si.

MegbeÉ–oÉ–o (Backpropagation)

Backpropagation
Mɔnu aɖe si wotsɔ hea aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋunuwo to kpekpeme yeyewo ɖoɖo me tso nu siwo dona tso eme va se ɖe nu siwo wodea eme me, si ɖea nyagbɔgblɔ̃ɖi ƒe vodadawo dzi kpɔtɔna.
Kpɔɖeŋu: Wozãnɛ le nɔnɔmetatawo ƒe klasifayerwo hehe me be woaɖe vodada ƒe agbɔsɔsɔme dzi kpɔtɔ le asiŋɔŋlɔdzesiwo dzeside me.

Makɔmakɔnyenye (Algorithim ƒe Makɔmakɔnyenye) (Bias (Algorithmic Bias))

Bias (Algorithmic Bias)
Ameŋkumakpɔmakpɔ si womenɔ mɔ kpɔm na o eye wòle ɖoɖo nu le AI ƒe nu siwo dona tso eme me le hehe ƒe nyatakaka siwo mesɔ o alo siwo menɔ teƒe na ame o ta.
Kpɔɖeŋu: Mo dzeside ƒe mɔ̃ɖaŋununya si daa vo le ameyibɔwo dzeside me edziedzi le esi womenɔ teƒe na wo le hehe ƒe nyatakakawo me o ta.

Nyatakaka Gãwo (Big Data)

Big Data
Nyatakaka gãwo ŋutɔ siwo bia dɔwɔnu tɔxɛwo be woatsɔ adzra wo ɖo, adzro wo me, eye woaɖe viɖe tso wo me, eye wowɔnɛ zĩ geɖe be woatsɔ ahe AI mɔ̃ɖaŋununyawo.
Kpɔɖeŋu: Zãla miliɔn geɖe ƒe nuwɔnawo zazã atsɔ ahe aɖaŋuɖoɖo mɔ̃wo na e-commerce platformwo.

Aɖaka Yibɔ ƒe Mɔ̃ɖaŋununya (Black Box Model)

Black Box Model
AI alo mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya ƒomevi aɖe si ƒe ememeŋutinunya gɔme sese menɔa bɔbɔe na amegbetɔwo o, si wɔnɛ be wòsesẽna be woase alesi wowɔa nyametsotsowo gɔme.
Kpɔɖeŋu: Aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋununya goglo aɖe si wozãna tsɔ lɔ̃a ɖe nyɔnyrɔ̃wo dzi gake meɖea nu si tae wolɔ̃ ɖe dɔbiala ɖeka dzi eye wogbe bubu la me kɔ nyuie o.

Susuŋutinunya ƒe Kɔmpiutaŋutinunya (Cognitive Computing)

Cognitive Computing
AI mɔ̃ɖaŋununya siwo woɖo be woasrɔ̃ amegbetɔ ƒe susuŋutinunya ƒe nuwɔnawo, abe susuŋutinunya kple nusɔsrɔ̃ ene, to mɔnuwo abe NLP kple nɔnɔmewo dzeside zazã me.
Kpɔɖeŋu: Susuŋutinunya ƒe kɔmpiutaŋutinunya mɔ̃ɖaŋununya si kpena ɖe seŋutinunya dɔwɔlawo ŋu be woadzro nyagbugbɔgblɔ̃wo me ahagblɔ nu siwo adzɔ ɖi.

Kɔmpiuta ƒe Nukpɔkpɔ (Computer Vision)

Computer Vision
Amegbetɔ ƒe nunya ƒe akpa aɖe si na kɔmpiutawo te ŋu ɖea nukpɔkpɔ ƒe nyatakakawo abe nɔnɔmetatawo kple video ene gɔme eye wowɔa dɔ le wo ŋu.
Kpɔɖeŋu: Mo dzeside ƒe mɔ̃ɖaŋununya siwo dea dzesi amewo le dedienɔnɔ ƒe video me to kɔmpiuta ƒe nukpɔkpɔ zazã me.

Gbeŋutinunya ƒe Nuƒoƒoƒu (Corpus)

Corpus
Nyaŋlɔ̃dzesi alo nyagbɔgblɔ̃ gã aɖe si wotsɔ hea gbeŋutinunya ƒe mɔ̃ɖaŋununyawo.
Kpɔɖeŋu: Common Crawl nyatakakadzraɖoƒe nye web corpus si le gaglãgbe si wozãna tsɔ hea gbeŋutinunya ƒe mɔ̃ɖaŋununya gãwo abe GPT ene.

Nyatakaka ƒe Tɔtɔ (Data Drift)

Data Drift
Nudzɔdzɔ si me nyatakaka siwo wodea eme trɔna le ɣeyiɣi aɖe megbe, si wɔnɛ be mɔ̃ɖaŋununya ƒe dɔwɔwɔ gblẽna.
Kpɔɖeŋu: Nyagbɔgblɔ̃ɖi ƒe dzadzraɖo ƒe mɔ̃ɖaŋununya na dɔwɔnuwo ƒe dɔwɔnuwo ƒe dɔwɔwɔ meɖea kɔ nyuie o esime wodea sensor mɔ̃ɖaŋununya yeye.

Nyatakaka DzesiÉ–oÉ–o (Data Labelling)

Data Labelling
Dɔwɔwɔ si me wodea dzesi nyatakakawo kple dzesiwo be wòasɔ na nusɔsrɔ̃ si le kpɔkplɔ te.
Kpɔɖeŋu: Kansa ƒe nɔnɔmetata akpe geɖe dzesiɖoɖo be wonye nu nyui alo vɔ̃ɖi be woatsɔ ahe kansa dzeside ƒe mɔ̃ɖaŋununya.

Nyatakaka Kuku (Data Mining)

Data Mining
Dɔwɔwɔ si me wokpɔa nɔnɔme siwo gɔme le, ƒomedodo, kple nu siwo mesɔ o le nyatakaka gãwo me.
Kpɔɖeŋu: Asitsalawo zãa nyatakaka kuku be woakpɔ be amesiwo ƒlea aɖiba la ƒlea beer hã.

Nusɔsrɔ̃ Gã (Deep Learning)

Deep Learning
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe akpa aɖe si zãa aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋununya siwo le teƒe geɖe be woatsɔ awɔ nɔnɔme sesẽwo le nyatakakawo me.
Kpɔɖeŋu: Wozãa nusɔsrɔ̃ gã le gbeŋutinunya ƒe mɔ̃ɖaŋununyawo abe GPT-4 kple nɔnɔmetata wɔwɔ ƒe mɔ̃ɖaŋununyawo abe Stable Diffusion ene me.

Kakaka ƒe Mɔ̃ɖaŋununyawo (Diffusion Models)

Diffusion Models
Nuwɔwɔ ƒe mɔ̃ɖaŋununya ƒomevi aɖe si srɔ̃a alesi woawɔ nyatakakawo to hoowɔwɔ si woɖo ɖe ɖoɖo nu trɔtrɔ vivivi me.
Kpɔɖeŋu: Stable Diffusion wɔa nɔnɔmetata siwo sɔ kple nu ŋutɔŋutɔ tso nyaŋlɔ̃dzesiwo me to kakaka mɔnuwo zazã me.

Tenɔnɔme (Embedding)

Embedding
Nyatakaka ƒe xexlẽdzesi ƒe vector teƒenɔnɔ, si wozãna zĩ geɖe be woatsɔ alé nyawo, nɔnɔmetatawo, alo nyagbɔgblɔ̃wo ƒe gɔmesese me ɖe asi.
Kpɔɖeŋu: Le NLP me la, nya 'gadɔ' ate ŋu anɔ abe 'ga' ene gake wòato vovo na 'tɔʋu' le nɔnɔmea nu.

Ɣeyiɣi aɖe (Epoch)

Epoch
Dɔwɔwɔ blibo le hehe ƒe nyatakakadzraɖoƒe bliboa dzi le mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya ƒe hehe ƒe dɔwɔwɔ me.
Kpɔɖeŋu: Ne nyatakakadzraɖoƒe aɖe me kpɔɖeŋu 1,000 le eye mɔ̃ɖaŋununya aɖe kpɔ wo katã zi ɖeka le hehe me la, eyae nye ɣeyiɣi ɖeka.

AI si sɔ le Agbenɔnɔ me (Ethical AI)

Ethical AI
Aɖaŋuɖoɖo kple dɔwɔwɔ ƒe filozofi si kpɔa egbɔ be AI mɔ̃ɖaŋununyawo wɔa dɔ le gaglãgbe, le dzɔdzɔenyenye me, eye wosɔ kple hadome ƒe agbenɔnɔ ƒe gɔmeɖosewo.
Kpɔɖeŋu: AI dɔxɔla dɔwɔnu si me makɔmakɔnyenye ƒe dodokpɔwo le be woaxe mɔ na ameŋkumakpɔmakpɔ le ame sue aɖewo ƒe dɔbialawo ŋu.

Aɖaŋuɖola ƒe Mɔ̃ɖaŋununya (Expert System)

Expert System
AI mɔ̃ɖaŋununya si srɔ̃a amegbetɔ aɖaŋuɖola ƒe nyametsotso wɔwɔ ƒe ŋutete le dɔwɔƒe aɖe me to se kple susuŋutinunya zazã me.
Kpɔɖeŋu: Aɖaŋuɖola ƒe mɔ̃ɖaŋununya si wozãna le agbledede me be woaɖo aɖaŋu le nukuwo ƒe dɔyɔyɔ ŋu le anyigba ƒe nyatakakawo kple dɔlékuiwo ƒe ŋutinya nu.

AI si Gɔme Wɔate ŋu Ase (XAI) (Explainable AI (XAI))

Explainable AI (XAI)
AI mɔ̃ɖaŋununya siwo woɖo be woana woƒe ememe dɔwɔnawo kple nyametsotsowo nase egɔme na amegbetɔwo, si doa dzideƒo kple akɔntabubu dzi.
Kpɔɖeŋu: Dɔléle dzeside ƒe AI si menaa aɖaŋuɖoɖo ko o, ke boŋ ɖea nu siwo ƒe dzesiwo he nyametsotso ma vɛ hã me.

Nusɔsrɔ̃ Vi aɖewo Ko (Few-shot Learning)

Few-shot Learning
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔnu si me wohea mɔ̃ɖaŋununya aɖe alo woɖoa eɖo nyuie to kpɔɖeŋu vi aɖewo siwo wode dzesii ko zazã me.
Kpɔɖeŋu: LLM aɖe ɖoɖo be wòaŋlɔ seŋutinunya ƒe emailwo ne wofiae kpɔɖeŋu 10 pɛ ko vɔ.

Ðoɖoɖo Nyuietɔ (Fine-tuning)

Fine-tuning
Dɔwɔwɔ si me woxɔa mɔ̃ɖaŋununya si wohe do ŋgɔ eye wogatrɔa hehe nɛ le nyatakakadzraɖoƒe yeye, sue aɖe dzi be wòawɔ dɔ tɔxɛ aɖe.
Kpɔɖeŋu: LLM gã aɖe abe GPT ene ɖoɖo nyuie le ememe seŋutinunya ƒe agbalẽwo dzi be woawɔ seŋutinunya ƒe agbalẽŋlɔ̃la kpeɖeŋutɔ.

Gɔmeɖoɖo ƒe Mɔ̃ɖaŋununya (Foundation Model)

Foundation Model
Mɔ̃ɖaŋununya gã aɖe si wohe le nyatakaka vovovowo kple nyatakaka gãwo dzi si woate ŋu atrɔ ɖe dɔ geɖe siwo le megbe ŋu.
Kpɔɖeŋu: GPT-4 kple PaLM 2 nye gɔmeɖoɖo ƒe mɔ̃ɖaŋununya siwo ate ŋu awɔ nuwo ƒe tanyawo, Q&A, gɔmeɖeɖe, kple bubuwo.

Susu si me mekÉ” o (Fuzzy Logic)

Fuzzy Logic
Susuŋutinunya ƒomevi aɖe si wɔa dɔ kple asixɔsɔ siwo te ɖe nu ŋu tsɔ wu nyateƒe/alakpa (binary) susuŋutinunya siwo li ke, si sɔ na susuŋutinunya le mɔkpɔkpɔmanɔmanɔ me.
Kpɔɖeŋu: Wozãnɛ le yame ƒe nɔnɔme dzikpɔkpɔ ƒe mɔ̃ɖaŋununyawo me be woaɖo dzoxɔxɔme ɖe nu siwo wodea eme siwo me mekɔ o abe 'dzoxɔxɔ vie' alo 'vuvɔŋutɔ' ene nu.

Nuwɔwɔ ƒe Tsitretsiɖoɖo ƒe Mɔ̃ɖaŋununya (GAN) (Generative Adversarial Network (GAN))

Generative Adversarial Network (GAN)
Nuwɔwɔ ƒe mɔ̃ɖaŋununya ƒe aɖaŋuɖoɖo si me mɔ̃ɖaŋununya eve — nuwɔla kple vovototodedeamela — hoa ʋli be yewoadzi nu siwo dona tso eme ƒe nyonyome ɖe edzi.
Kpɔɖeŋu: Wozãa GAN-wo be woatsɔ awɔ video alakpawo alo awɔ nuhiahiãwo ƒe fotowo siwo sɔ kple nu ŋutɔŋutɔ tso aɖaŋuɖoɖowo me.

Nuwɔwɔ ƒe AI (Generative AI)

Generative AI
Amegbetɔ ƒe nunya ƒomevi aɖe si ate ŋu awɔ nu yeyewo — abe nyaŋlɔ̃dzesiwo, nɔnɔmetatawo, hadzidzi, alo video ene — tso hehe ƒe nyatakakawo me.
Kpɔɖeŋu: ChatGPT si le blog-ŋlɔ̃mewo wɔm alo Midjourney si le dijitaal aɖaŋudɔwo wɔm tso nyaŋlɔ̃dzesiwo me.

Nuwɔwɔ ƒe Gɔmeɖoɖo ƒe Mɔ̃ɖaŋununya (GPT) (Generative Pre-trained Transformer (GPT))

Generative Pre-trained Transformer (GPT)
Gbeŋutinunya ƒe mɔ̃ɖaŋununya gãwo ƒe ƒuƒoƒo aɖe si OpenAI wɔ si zãa transformer aɖaŋuɖoɖo eye wohe do ŋgɔ le nyaŋlɔ̃dzesi gãwo dzi be wòawɔ gbeŋutinunya dɔ vovovowo.
Kpɔɖeŋu: GPT-4 ate ŋu aŋlɔ nyatakakawo, aɖe gbegbɔgblɔ̃wo gɔme, eye wòaƒo nu tso agbalẽwo ŋu kple biaɖaŋu vi aɖewo ko.

Dzɔdzɔmeŋutinunya ƒe Algorithim (Genetic Algorithm)

Genetic Algorithm
Ðoɖoɖo nyuietɔ ƒe mɔnu aɖe si wotu ɖe dzɔdzɔme ƒe tiatia dzi si me kɔkɔɖoɖowo tua wo ɖokui ɖo le ɣeyiɣi aɖe megbe to tɔtrɔ, tɔtɔ, kple tiatia me.
Kpɔɖeŋu: Wozãnɛ be woatsɔ aɖo aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋununya siwo wɔa dɔ nyuie to agbetsitsi ƒe sɔsrɔ̃ me.

Drɔ̃ekuku (Hallucination)

Hallucination
AI mɔ̃ɖaŋununya aɖe ƒe nu siwo gɔme sese le bɔbɔe gake nyateƒee mele eme o alo nu siwo gɔme mele o wɔwɔ.
Kpɔɖeŋu: Gbeŋutinunya ƒe mɔ̃ɖaŋununya aɖe to nya aɖe si meli o ɖa alo naa ŋutinya me nyateƒe alakpawo.

Mɔkpɔkpɔ (Heuristic)

Heuristic
Mɔnu si sɔ na kuxiwo gbɔ kpɔkpɔ si meka ɖe edzi be kɔkɔɖoɖo deblibo anɔ anyi o gake esɔ gbɔ na taɖodzinu siwo li enumake.
Kpɔɖeŋu: Asibidɛ zazã be woatsɔ abu agbatsɔɣi akɔnta le agbatsɔmɔ̃ ƒe AI mɔ̃ɖaŋununya me.

Hyperparameter (Hyperparameter)

Hyperparameter
Ðoɖoɖo ƒe asixɔsɔ si woɖo hafi he mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya, abe nusɔsrɔ̃ ƒe abɔbɔ alo teƒe geɖe ƒe xexlẽme ene.
Kpɔɖeŋu: ƒuƒoƒo ƒe lolome ɖoɖo tso 32 va ɖo 128 be woado hehe ƒe ablaɖeɖe kple mɔ̃ɖaŋununya ƒe dɔwɔwɔ dzi.

TefeÉ–oÉ–o (Inference)

Inference
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya si wohe zazã be woatsɔ agblɔ nyagbɔgblɔ̃ɖiwo alo awɔ nu siwo dona tso eme tso nyatakaka yeye siwo wodea eme me.
Kpɔɖeŋu: GPT mɔ̃ɖaŋununya si woɖo nyuie zazã be woatsɔ aŋlɔ emailwo na asisiwo ƒe kpekpeɖeŋuha aɖe.

TaÉ–odzinu Didi (Intent Detection)

Intent Detection
Dɔ aɖe le dzɔdzɔme gbegbɔgblɔ̃ gɔmesese me si me mɔ̃ɖaŋununya dea dzesi zãla ƒe taɖodzinu alo tameɖoɖo le gbedasi aɖe me.
Kpɔɖeŋu: Le dzeɖoɖomɔ̃ aɖe me la, wodea dzesii be 'medi be maɖo mɔ̃ɖaŋununya' nye mɔzɔzɔ ƒe taɖodzinu.

Nuwo Æ’e Internet (IoT) (Internet of Things (IoT))

Internet of Things (IoT)
Ŋutilã me dɔwɔnu siwo do ka kple wo nɔewo ƒe mɔ̃ɖaŋununya si me sensor, software, kple mɔ̃ɖaŋununya bubuwo le be woaƒo nyatakakawo nu ƒu ahado wo ɖa.
Kpɔɖeŋu: Dzoxɔxɔmeŋlɔ̃mɔ̃ kple aɖiba siwo gblɔa zazã ƒe nyatakakawo eye woɖoa ɖoɖowo ɖe AI ƒe numekukuwo nu.

Gɔmeɖeɖe ƒe Ŋutete (Interpretability)

Interpretability
Agbɔsɔsɔme si nu amegbetɔ ate ŋu ase mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya ƒe ememe dɔwɔnawo kple eƒe nyametsotso wɔwɔ ƒe dɔwɔwɔ gɔme.
Kpɔɖeŋu: Nyametsotso ƒe ati gɔme sese le bɔbɔe wu aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋununya goglo elabena woate ŋu akpɔ eƒe nyametsotsowo yome.

Jupyter ƒe Agbalẽ (Jupyter Notebook)

Jupyter Notebook
Gbeŋlɔ̃la si le gaglãgbe si ɖea mɔ na zãlawo be woaŋlɔ kɔɔdu, akpɔ nu siwo dona tso eme, eye woaŋlɔ numekukuwo ɖi le gbeɖiɖi ɖeka me.
Kpɔɖeŋu: Nyatakakaŋutinunyaŋutinunyalawo zãa Jupyter Notebooks be woatsɔ awɔ mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununyawo ƒe kpɔɖeŋuwo ahama nu siwo dona tso eme.

K-Teƒenɔlawo (KNN) (K-Nearest Neighbours (KNN))

K-Nearest Neighbours (KNN)
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe algorithm bɔbɔe, si menye parametric o si wozãna na klasifikeƒe kple regression. Ewɔa nyametsotsowo le hehe ƒe kpɔɖeŋu siwo te ɖe eŋu wu le nɔnɔmea ƒe teƒea nu.
Kpɔɖeŋu: Be woatsɔ abu atikutsetse yeye aɖe be enye apulo alo pear la, KNN kpɔa atikutsetse siwo wode dzesii siwo te ɖe eŋu wu le nɔnɔme kple amadede me la ɖa.

Nunya Æ’e GbeÉ–iÉ–i (Knowledge Graph)

Knowledge Graph
Nyatakaka ƒe aɖaŋuɖoɖo si zãa nuwo kple liƒowo be wòanɔ teƒe na nuwo kple woƒe ƒomedodowo ƒe gɔmeɖeɖe siwo do ka kple wo nɔewo ahadzra wo ɖo.
Kpɔɖeŋu: Google ƒe nunyaŋutinunya ƒe panel la do ŋusẽ tso nunyaŋutinunya ƒe gbeɖiɖi si doa ka kple nuwo abe amewo, teƒewo, kple nudzɔdzɔwo ene me.

Gbeŋutinunya ƒe Mɔ̃ɖaŋununya ƒe Ðoɖoɖo Nyuietɔ (LLMO) (Language Learning Model Optimisation (LLMO))

Language Learning Model Optimisation (LLMO)
Mɔnu siwo wozãna be woado gbeŋutinunya ƒe mɔ̃ɖaŋununya gãwo ƒe dɔwɔwɔ, dɔwɔwɔ nyuie, alo alesi woate ŋu atrɔ ɖe nu ŋu na dɔ tɔxɛwo alo dɔwɔƒewo dzi.
Kpɔɖeŋu: Quantisation kple mɔfiamewo ƒe ɖoɖoɖo zazã be woatsɔ aɖo LLM aɖe ɖo nyuie na dɔwɔƒewo zazã.

Gbeŋutinunya ƒe Mɔ̃ɖaŋununya Gã (LLM) (Large Language Model (LLM))

Large Language Model (LLM)
Nusɔsrɔ̃ gã ƒe mɔ̃ɖaŋununya ƒomevi aɖe si wohe le nyaŋlɔ̃dzesi gãwo dzi si ate ŋu awɔ, ase egɔme, eye wòabu susu kple amegbetɔ ƒe gbe.
Kpɔɖeŋu: ChatGPT kple Claude nye LLM siwo wohe be woakpe ɖe ame ŋu le nuŋlɔ̃, kɔɔduŋlɔ̃, kple biabiawo ŋuɖoɖo me.

Nɔnɔme si le Ɣaɣla (Latent Space)

Latent Space
Teƒenɔnɔme gã aɖe si me wofea nu siwo wodea eme siwo sɔ la nu ƒu le teƒe ɖeka, si wozãna le nuwɔwɔ ƒe mɔ̃ɖaŋununyawo kple tenɔnɔmewo me.
Kpɔɖeŋu: Le nɔnɔmetata wɔwɔ me la, nɔnɔme si le ɣaɣla la trɔtrɔ ate ŋu atrɔ nɔnɔmewo abe keklẽ alo seselelãme ene.

Nusɔsrɔ̃ ƒe Abɔbɔ (Learning Rate)

Learning Rate
Hyperparameter vevi aɖe le hehe me si kpɔa alesi woɖoa mɔ̃ɖaŋununya ƒe kpekpemewo ɖe vodada ƒe gradient nu dzi.
Kpɔɖeŋu: Nusɔsrɔ̃ ƒe abɔbɔ kɔkɔ ate ŋu ahe nu suetɔwo ƒuƒu vɛ, evɔ abɔbɔ si le tsɛ akpa la ɖea hehe ƒe ŋgɔyiyi dzi kpɔtɔna.

Mɔ̃wo ƒe Nusɔsrɔ̃ (ML) (Machine Learning (ML))

Machine Learning (ML)
AI ƒe alɔdzedɔwɔƒe aɖe si na mɔ̃ɖaŋununyawo te ŋu srɔ̃a nu tso nyatakakawo me eye wòdoa dɔwɔwɔ dzi ɖe edzi mɔ̃ɖaŋununya tɔxɛ aɖeke manɔmee.
Kpɔɖeŋu: Spam-filterwo zãa mɔ̃wo ƒe nusɔsrɔ̃ be woatsɔ abu emailwo be wonye spam alo menye o le kpɔɖeŋu siwo va yi nu.

Mɔ̃ɖaŋununya ƒe Tɔtɔ (Model Drift)

Model Drift
Nudzɔdzɔ si me mɔ̃ɖaŋununya aɖe ƒe dɔwɔwɔ meɖea kɔ nyuie o le ɣeyiɣi aɖe megbe le nyatakaka alo nutome ƒe tɔtrɔwo ta.
Kpɔɖeŋu: Blemakpɔmɔ̃ aɖe ƒe dɔwɔwɔ meɖea kɔ nyuie o esime blemakpɔmɔ̃wo le ŋgɔ yim.

Mɔ̃ɖaŋununya ƒe Hehenana (Model Training)

Model Training
Dɔwɔwɔ si me wodea nyatakakawo mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya me eye woɖoa eƒe parameterwo ɖe ɖoɖo nu be woaɖe vodada dzi kpɔtɔ.
Kpɔɖeŋu: Aɖaŋuɖoɖo mɔ̃ aɖe hehe le asisiwo ƒe nuƒleƒle ƒe ŋutinya dzi be wòaɖo aɖaŋu le nuhiahiã yeyewo ŋu.

AI si wɔa dɔ kple nu vovovowo (Multimodal AI)

Multimodal AI
AI mɔ̃ɖaŋununya siwo ate ŋu awɔ dɔ le nyatakaka ƒomevi geɖe abe nyaŋlɔ̃dzesiwo, nɔnɔmetatawo, gbeɖiɖi, kple video ene ŋu ahawɔ dɔ kpli wo.
Kpɔɖeŋu: Mɔ̃ɖaŋununya aɖe abe GPT-4 Vision ene si ate ŋu axlẽ nyaŋlɔ̃dzesiwo ahagɔme nɔnɔmetatawo le ɣeyiɣi ɖeka me.

Dzɔdzɔme Gbegbɔgblɔwo ƒe Dɔwɔwɔ (NLP) (Natural Language Processing (NLP))

Natural Language Processing (NLP)
AI ƒe akpa aɖe si léa fɔ ɖe kɔmpiutawo kple amegbetɔ ƒe (dzɔdzɔme) gbegbɔgblɔ̃wo dome ƒomedodo ŋu. Enaa mɔ̃wo te ŋu xlẽa nu, sea egɔme, eye woɖoa ŋu le amegbetɔ ƒe gbe me.
Kpɔɖeŋu: Wozãa NLP le gbeɖiɖi kpeɖeŋutɔwo, gbegbɔgblɔ̃ gɔmeɖeɖe dɔwɔnuwo, kple dzeɖoɖomɔ̃wo me.

Aɖɔŋuɖoɖo ƒe Mɔ̃ɖaŋununya (Neural Network)

Neural Network
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya si wotu ɖe amegbetɔ ƒe aɖɔŋuɖoɖo ƒe aɖaŋuɖoɖo dzi, si me nu siwo do ka kple wo nɔewo (neurons) ƒe teƒe geɖe le.
Kpɔɖeŋu: Aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋunuwo le nusɔsrɔ̃ gã ƒe mɔ̃ɖaŋununya siwo wozãna le nɔnɔmetata kple gbeɖiɖi dzeside me la megbe.

Hoowɔwɔ (Noise)

Noise
Nyatakaka siwo woɖo ɖe ɖoɖo nu alo siwo mehiã o le nyatakakawo me siwo ate ŋu aɣla nɔnɔme siwo gɔme le eye wòagblẽ mɔ̃ɖaŋununya ƒe dɔwɔwɔ.
Kpɔɖeŋu: Sensor ƒe vodadawo alo nyatakaka siwo me typo le la ate ŋu anye hoowɔwɔ.

Nunyaŋutinunya (Ontology)

Ontology
Aɖaŋuɖoɖo si woɖo si dea gɔmeɖosewo ƒuƒoƒo eye wòɖea ƒomedodowo me le dɔwɔƒe aɖe me, si wozãna zĩ geɖe le gɔmesese ƒe AI mɔ̃ɖaŋununyawo me.
Kpɔɖeŋu: Nunyaŋutinunya le lãmesẽnyawo me ate ŋu aɖe alesi dzesiwo do ƒome kple dɔlélewo kple dɔyɔyɔwo me.

Nusɔsrɔ̃ si gbɔ agbɔ (Overfitting)

Overfitting
Mɔ̃ɖaŋununya ƒe vodada si me mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔ̃ɖaŋununya léa hoowɔwɔ le hehe ƒe nyatakakawo me eye wòwɔa dɔ nyuie le nyatakaka yeyewo dzi.
Kpɔɖeŋu: Mɔ̃ɖaŋununya si ŋlɔa hehe ƒe ŋuɖoɖowo ɖi gake mate ŋu awɔ dɔ le dodokpɔ ƒe nyatakaka siwo womekpɔ o ŋu la gbɔ agbɔ.

Nudzɔdzɔwo ƒe Nyagbɔgblɔ̃ɖi (Predictive Analytics)

Predictive Analytics
Nyatakakawo, algorithm-wo, kple AI zazã be woade dzesi alesi nu siwo adzɔ le etsɔ me la anɔ le ŋutinya me nyatakakawo nu.
Kpɔɖeŋu: Asitsalawo zãa nyagbɔgblɔ̃ɖi ƒe numekukuwo be woatsɔ agblɔ nuhiahiã aɖewo ƒe didi ɖi.

Gɔmeɖoɖo ƒe Hehenana (Pre-training)

Pre-training
Dɔwɔwɔ si me wohea mɔ̃ɖaŋununya aɖe le gɔmedzedzea me le nyatakakadzraɖoƒe gã aɖe dzi hafi woɖoa eɖo nyuie na dɔ tɔxɛwo.
Kpɔɖeŋu: Wohe GPT mɔ̃ɖaŋununyawo do ŋgɔ le gbeŋutinunya gãwo dzi hafi woɖoa wo ɖe asisiwo ƒe dzeɖoɖomɔ̃wo ŋu.

Biaɖaŋuɖoɖo ƒe Mɔ̃ɖaŋununya (Prompt Engineering)

Prompt Engineering
Aɖaŋudɔ kple dzɔdzɔmeŋutinunya si ku ɖe biaɖaŋu siwo wɔa dɔ nyuie wɔwɔ ŋu be woatsɔ akplɔ gbeŋutinunya ƒe mɔ̃ɖaŋununya gãwo ƒe nu siwo dona tso eme.
Kpɔɖeŋu: Mɔ̃ɖaŋununya ƒe mɔfiamewo tsɔtsɔ kpe ɖe eŋu abe 'Ðo ŋu abe nufiala dɔmenyotɔ ene' nye biaɖaŋuɖoɖo ƒe mɔ̃ɖaŋununya ƒe kpɔɖeŋu.

Agbɔsɔsɔme Didi (Quantisation)

Quantisation
Mɔ̃ɖaŋununya ƒe babla ƒe mɔnu aɖe si ɖea bit siwo wozãna be wòanɔ teƒe na kpekpemewo kple dɔwɔnawo dzi kpɔtɔ, si doa dɔwɔwɔ nyuie dzi.
Kpɔɖeŋu: Mɔ̃ɖaŋununya aɖe ƒe agbɔsɔsɔme didi tso 32-bit va ɖo 8-bit doa dɔwɔwɔ dzi le asitelefonwo dzi.

Quantum Kɔmpiutaŋutinunya (Quantum Computing)

Quantum Computing
Kɔmpiutaŋutinunya ƒe gɔmeɖose yeye si wotu ɖe quantum mɔ̃ɖaŋununya dzi, si me mɔnukpɔkpɔ le na dɔwɔwɔ ƒe ŋutete siwo le exponential.
Kpɔɖeŋu: Quantum kɔmpiutaŋutinunya ate ŋu aɖe AI hehe dzi akɔ wu klasik ƒe liƒowo gbeɖeka.

Susuŋutinunya ƒe Mɔ̃ (Reasoning Engine)

Reasoning Engine
Mɔ̃ɖaŋununya aɖe le AI me si ɖea susuŋutinunya ƒe nyametsotsowo tso nyateƒe alo nyatakaka aɖewo me to se alo tefeɖoɖo ƒe algorithm-wo zazã me.
Kpɔɖeŋu: AI dɔléle dzeside dɔwɔnu zãa susuŋutinunya ƒe mɔ̃ be wòatsɔ aɖe dɔléle siwo ate ŋu adzɔ la ɖa le dzesiwo nu.

Nusɔsrɔ̃ si me wodoa ŋusẽ ame le (RL) (Reinforcement Learning (RL))

Reinforcement Learning (RL)
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe akpa aɖe si me dɔwɔlawo srɔ̃a nu to dɔwɔwɔ kple woƒe nutome me be woado fetu siwo woƒo ƒu la dzi.
Kpɔɖeŋu: Robot aɖe si le zɔzɔ srɔ̃m to tetekpɔ kple vodada me to RL mɔnuwo zazã me.

Nusɔsrɔ̃ si me wodoa ŋusẽ ame le kple Amegbetɔ ƒe Nyaɖoɖo (RLHF) (Reinforcement Learning with Human Feedback (RLHF))

Reinforcement Learning with Human Feedback (RLHF)
Nusɔsrɔ̃ ƒe mɔnu si me amegbetɔ ƒe didiwo fiaa mɔ AI ƒe fetu dzesi, si wozãna zĩ geɖe le gbeŋutinunya ƒe mɔ̃ɖaŋununyawo ɖoɖo nyuie me.
Kpɔɖeŋu: Wohe ChatGPT kple RLHF be wòawɔ ŋuɖoɖo siwo kpena ɖe ame ŋu wu eye wòanɔ dedie.

Nuwɔwɔ si wodo ɖe dzi kple Nyaɖeɖe (RAG) (Retrieval-Augmented Generation (RAG))

Retrieval-Augmented Generation (RAG)
Mɔnu si tsakaa nyatakaka ɖeɖe kple nuwɔwɔ, si me LLM aɖe ɖea agbalẽ siwo sɔ la be wòado eƒe ŋuɖoɖo dzi.
Kpɔɖeŋu: AI kpeɖeŋutɔ aɖe ɖea nuhiahiãwo ƒe dɔwɔwɔŋutinunyawo eye wòyɔa wo esime wòle ŋuɖoɖo na mɔ̃ɖaŋununyaŋutinunya biabia aɖe wɔm.

Ðokuitsɔsrɔ̃ (Self-Supervised Learning)

Self-Supervised Learning
Hehe ƒe mɔnu si me mɔ̃ɖaŋununya srɔ̃a nɔnɔmewo to eya ŋutɔ ƒe dzesiwo wɔwɔ tso nyatakaka siwo mele nuŋlɔ̃dzesi me o me, si ɖea alesi wotu ɖe amegbetɔ ƒe nyatakaka siwo wode dzesii ŋu dzi kpɔtɔ.
Kpɔɖeŋu: Wohe BERT kple ɖokuitsɔsrɔ̃ to nya siwo bu le nyaŋlɔ̃dzesi me gbɔgblɔ̃ ɖi me.

Gɔmesese ƒe Didi (Semantic Search)

Semantic Search
Didi ƒe mɔnu aɖe si sea zãla ƒe taɖodzinu kple gɔmesese si le nyawo me gɔme, menye nya veviwo sɔsɔ ko o.
Kpɔɖeŋu: 'Alesi woaɖɔ tɔ si le sisim ɖo' didi naa mɔfiamewo ne nya 'tɔ si le sisim' mele agbalẽa me gɔ̃ hã o.

Seselelãme ƒe Numekuku (Sentiment Analysis)

Sentiment Analysis
Dɔwɔwɔ si me wodea dzesi seselelãmewo, susuwo, alo nɔnɔmewo le nyaŋlɔ̃dzesi me, si wowɔna zĩ geɖe be enye nyui, vɔ̃ɖi, alo yame.
Kpɔɖeŋu: Twitter-ŋlɔ̃mewo dzodzro be woakpɔ alesi amewo wɔa nu ɖe nuhiahiã yeye aɖe ŋui.

Akɔdada (Stochastic)

Stochastic
Eku ɖe akɔdada alo nu siwo ate ŋu adzɔ ƒe nuwɔna ŋu, si wozãna zĩ geɖe le nuwɔwɔ ƒe AI kple ɖoɖoɖo nyuietɔ ƒe algorithm-wo me.
Kpɔɖeŋu: GPT-4 ƒe nu si dona tso eme la to vovo na nu si wodea eme ɖeka tɔgbe le eƒe akɔdada ƒe gɔmeɖeɖe ƒe dɔwɔwɔ ta.

AI Ŋusẽtɔ (Strong AI)

Strong AI
Woyɔnɛ hã be Amegbetɔ ƒe Nunya Gbogbo (AGI), efia mɔ̃ siwo si amegbetɔ ƒe susuŋutinunya ƒe ŋutete le le dɔwɔƒe katã.
Kpɔɖeŋu: Etsɔme AI si ate ŋu aŋlɔ agbalẽwo le eɖokui si, aɖo duwo ƒe ɖoɖo, eye wòakpɔ agbenɔnɔŋutinya kuxiwo gbɔ nyuie.

AI Gãtɔ Kekeake (SAI) (Super Artificial Intelligence (SAI))

Super Artificial Intelligence (SAI)
AI aɖe si wosusui be eƒo amegbetɔ ƒe nunya ta le akpa sia akpa—susuŋutinunya, nu yeye wɔwɔ ƒe ŋutete, seselelãmeŋutinunya, kple bubuwo.
Kpɔɖeŋu: SAI aɖe ate ŋu atu dzɔdzɔmeŋutinunya kple filozofi yeyewo le eɖokui si.

Nusɔsrɔ̃ si le Kpɔkplɔ te (Supervised Learning)

Supervised Learning
Mɔ̃wo ƒe nusɔsrɔ̃ ƒe mɔnu si me wohea mɔ̃ɖaŋununyawo le nyatakaka siwo wode dzesii dzi be woasrɔ̃ nu siwo wodea eme kple nu siwo dona tso eme ƒe nuŋlɔ̃dzesiwo.
Kpɔɖeŋu: Mɔ̃ɖaŋununya aɖe fiafia be wòabu emailwo be wonye spam alo menye o to ŋutinya me kpɔɖeŋuwo zazã me.

Nyatakaka siwo wotsÉ” asi wÉ” (Synthetic Data)

Synthetic Data
Nyatakaka siwo wotsɔ asi wɔ siwo srɔ̃a xexeame ŋutɔŋutɔ ƒe nyatakakawo, si wozãna zĩ geɖe na hehe ne xexeame ŋutɔŋutɔ ƒe nyatakakawo mesɔ gbɔ o alo enye nu vevi aɖe.
Kpɔɖeŋu: Lãmesẽnyawo ŋuti nɔnɔmetata siwo wotsɔ asi wɔ wɔwɔ be woatsɔ ahe dɔléle dzeside ƒe mɔ̃ɖaŋununyawo dɔléla ƒe gomenɔamesiwo madamadãe.

Dzesi (Token)

Token
Nyaŋlɔ̃dzesi ƒe akpa aɖe si LLM-wo wɔa dɔ le—zi geɖe la, enye nya alo nya ƒe akpa aɖe.
Kpɔɖeŋu: Nyagbɔgblɔ̃ 'Hello world!' la ma ɖe dzesi 3 me: 'Hello', 'world', kple '!'.

DzesiÉ–oÉ–o (Tokenisation)

Tokenisation
Dɔwɔwɔ si me womãa nyaŋlɔ̃dzesiwo me ɖe dzesiwo me be mɔ̃ɖaŋununya aɖe nawɔ dɔ le wo ŋu.
Kpɔɖeŋu: Le NLP me la, 'ChatGPT nyo' zu ['Chat', 'G', 'PT', 'is', 'great'].

Nusɔsrɔ̃ ƒe Tsɔtsɔ (Transfer Learning)

Transfer Learning
Nunya si tso dɔ ɖeka me zazã be woado nusɔsrɔ̃ dzi le dɔ bubu si do ƒome kplii dzi, si ɖea heheɣi kple nyatakaka ƒe hiahiãwo dzi kpɔtɔ.
Kpɔɖeŋu: Mɔ̃ɖaŋununya si wohe le Eŋlisigbe me nyaŋlɔ̃dzesi dzi ɖoɖo nyuie be wòawɔ seselelãme ƒe numekuku le gbe bubu me.

Tɔtrɔla (Transformer)

Transformer
Aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋununya ƒe aɖaŋuɖoɖo si zãa ŋkuɖoɖo mɔ̃ɖaŋununyawo be wòawɔ nyatakaka siwo kplɔ wo nɔewo ɖo ƒe mɔ̃ɖaŋununya, si wozãna le LLM-wo me.
Kpɔɖeŋu: BERT, GPT, kple T5 katã nye mɔ̃ɖaŋununya siwo wotu ɖe transformer dzi.

Nusɔsrɔ̃ si mesɔ gbɔ o (Underfitting)

Underfitting
Ne mɔ̃ɖaŋununya aɖe bɔbɔ akpa be wòalé nɔnɔmewo le hehe ƒe nyatakakawo me, si hea dɔwɔwɔ gbegblẽ vɛ.
Kpɔɖeŋu: Mɔ̃ɖaŋununya si le mɔ̃ɖaŋununya dzi si le agbagba dzem be yeagblɔ nɔnɔmetata ƒe klasifikeƒe sesẽwo ɖi la ate ŋu anɔ sue.

Nusɔsrɔ̃ si mele Kpɔkplɔ te o (Unsupervised Learning)

Unsupervised Learning
Nusɔsrɔ̃ ƒe mɔnu si me mɔ̃ɖaŋununyawo dea dzesi nɔnɔmewo alo ƒuƒoƒowo le nyatakaka siwo womeŋlɔ ɖi o me.
Kpɔɖeŋu: Asisiwo ƒoƒo ƒu le nuƒleƒle ƒe nuwɔna nu dzesi siwo woɖo do ŋgɔ manɔmee.

Zãla ƒe Taɖodzinu (User Intent)

User Intent
Taɖodzinu alo tameɖoɖo si le zãla ƒe biabia alo dɔwɔwɔ megbe.
Kpɔɖeŋu: Zãla si ŋlɔ 'alesi woaɖa cake' la anya di be yeakpɔ nuɖaɖa ƒe mɔnu.

Kpɔɖoɖo ƒe Nuƒoƒoƒu (Validation Set)

Validation Set
Nyatakaka ƒe akpa aɖe si wozãna be woatsɔ abu mɔ̃ɖaŋununya ƒe dɔwɔwɔ akɔnta le hehe me ahado hyperparameterwo.
Kpɔɖeŋu: Wozãnɛ be woade dzesi nusɔsrɔ̃ si gbɔ agbɔ hafi woawɔ dodokpɔ mamlɛa.

Vector NyatakakadzraÉ–oÆ’e (Vector Database)

Vector Database
Nyatakakadzraɖoƒe si woɖo be wòadzra vector tenɔnɔmewo ɖo ahadi wo le AI dɔwo me abe sɔsɔ didi kple RAG ene.
Kpɔɖeŋu: Pinecone kple Weaviate nye vector nyatakakadzraɖoƒewo na nyaŋlɔ̃dzesi alo nɔnɔmetata tenɔnɔmewo dzraɖo.

Vector Tenɔnɔme (Vector Embedding)

Vector Embedding
Nyatakaka ƒe xexlẽdzesi teƒenɔnɔ si léa gɔmesese kple ƒomedodowo me ɖe asi le vector teƒe aɖe.
Kpɔɖeŋu: Nya 'fia' kple 'fianyɔnu' siwo sɔ kple wo nɔewo kple vovototo suesuesue siwo le ŋutsu kple nyɔnu dome.

Kpeɖeŋutɔ si le Yame (Virtual Assistant)

Virtual Assistant
AI-ŋusẽtɔ software dɔwɔla si kpena ɖe zãlawo ŋu be woawɔ dɔwo nu to dzeɖoɖo alo gbeɖiɖi seɖoɖowo me.
Kpɔɖeŋu: Siri, Alexa, kple Google Assistant nye kpeɖeŋutɔ siwo le yame siwo xɔ ŋkɔ.

GbeÉ–iÉ–i Dzeside (Voice Recognition)

Voice Recognition
Mɔ̃ɖaŋununya si ɖea gbe si wogblɔna gɔme eye wòtrɔnɛ wòzua nyaŋlɔ̃dzesi alo nuwɔna.
Kpɔɖeŋu: Gbeɖiɖi ŋlɔ̃ kple gbeɖiɖi seɖoɖowo tu ɖe gbeɖiɖi dzeside ƒe mɔ̃ɖaŋununyawo dzi.

AI si me ŋusẽ mele o (Weak AI)

Weak AI
AI mɔ̃ɖaŋununya siwo woɖo be woawɔ dɔ sue, tɔxɛ aɖe nunya gã aɖeke manɔmee.
Kpɔɖeŋu: Chess-ƒoƒo AI si mate ŋu ase gbe gɔme alo aku ʋu o la nye AI si me ŋusẽ mele o ƒe kpɔɖeŋu.

Web Nyatakaka Kuku (Web Scraping)

Web Scraping
Nyatakakawo ɖeɖe le website-wo dzi le mɔ̃ɖaŋununya nu, si wozãna zĩ geɖe be woaƒo hehe ƒe nyatakakawo nu ƒu alo alé ŋku ɖe nu siwo le eme ŋu.
Kpɔɖeŋu: Aƒewo ƒe nyatakakawo kuku be woatsɔ ahe aƒewo ƒe asixɔsɔ ƒe mɔ̃ɖaŋununya.

Kpekpeme (Weight)

Weight
Parameter aɖe le aɖɔŋuɖoɖo ƒe mɔ̃ɖaŋunuwo me si ɖoa ŋusẽkpɔɖeamedzi ƒe ŋusẽ si le nu ɖeka si dzi le bubu dzi.
Kpɔɖeŋu: Kpekpemewo trɔna le hehe me be woaɖe mɔ̃ɖaŋununya ƒe vodada dzi kpɔtɔ.

GbeÉ–iÉ–i (Whisper)

Whisper
Gbe-to-text mɔ̃ɖaŋununya si OpenAI wɔ si ate ŋu aŋlɔ gbeɖiɖi le gbegbɔgblɔ̃ geɖe me.
Kpɔɖeŋu: Whisper ate ŋu aŋlɔ nufiamewo kple podcastwo kple dɔwɔwɔ kɔkɔ.

YAML (YAML)

YAML
Amegbetɔ ƒe nuŋlɔ̃mɔnu si wotsɔ wɔa nyatakakawo ƒe serialisation, si wozãna le mɔ̃wo ƒe nusɔsrɔ̃ ƒe dɔwɔnawo me na ɖoɖoɖo ƒe faɛlwo.
Kpɔɖeŋu: Mɔ̃ɖaŋununya ƒe parameterwo ɖeɖe fia le YAML faɛl aɖe me na hehe le PyTorch me.

Nusɔsrɔ̃ si me gɔmeɖoɖo mele o (Zero-shot Learning)

Zero-shot Learning
Mɔ̃ɖaŋununya aɖe ƒe ŋutete be wòawɔ dɔ siwo womehe tɔxɛ le o to nunya gã zazã me.
Kpɔɖeŋu: Mɔ̃ɖaŋununya aɖe si ɖoa ŋu na seŋutinunya biabiawo togbɔ be womehe le seŋutinunya nyatakakawo dzi tɔxɛ o hã.

Zettabyte (Zettabyte)

Zettabyte
Dijitaal nyatakaka ƒe akpa aɖe si sɔ kple byte sextillion ɖeka (10^21), si wozãna zĩ geɖe be woatsɔ aɖɔ internet nyatakakawo ƒe lolome.
Kpɔɖeŋu: Xexeame katã ƒe internet zɔzɔ ƒo zettabyte ɖeka ƒe sia ƒe ƒe 2016 me.